Problem 52

Consider the physical quantities m, s, v, a, and t with dimensions $[m]=\mathrm{M},[s]=\mathrm{L},[v]=\mathrm{LT}^{-1}$, $[a]=\mathrm{LT}^{-2}$, and $[t]=\mathrm{T}$. Assuming each of the following equations is dimensionally consistent, find the dimension of the quantity on the left-hand side of the equation: (a) $F=m a$; (b) $K=0.5 m v^{2}$; (c) $p=m v$; (d) $W=m a s ; ~(e) ~ L=m v r$.

Solution

Part (a)
Check the units of both sides.

$$
\begin{aligned}
{[F] } & =[m a] \\
& =[m][a] \\
& =\mathrm{M} \cdot \mathrm{LT}^{-2} \\
& =\mathrm{MLT}^{-2}
\end{aligned}
$$

Part (b)

Check the units of both sides.

$$
\begin{aligned}
{[K] } & =\left[0.5 m v^{2}\right] \\
& =[0.5][m]\left[v^{2}\right] \\
& =[0.5][m][v]^{2} \\
& =1 \cdot \mathrm{M} \cdot\left(\mathrm{LT}^{-1}\right)^{2} \\
& =\mathrm{ML}^{2} \mathrm{~T}^{-2}
\end{aligned}
$$

Part (c)
Check the units of both sides.

$$
\begin{aligned}
{[p] } & =[m v] \\
& =[m][v] \\
& =\mathrm{M} \cdot \mathrm{LT}^{-1} \\
& =\mathrm{MLT}^{-1}
\end{aligned}
$$

Part (d)

Check the units of both sides.

$$
\begin{aligned}
{[W] } & =[\text { mas }] \\
& =[m][a][s] \\
& =\mathrm{M} \cdot \mathrm{LT}^{-2} \cdot \mathrm{~L} \\
& =\mathrm{ML}^{2} \mathrm{~T}^{-2}
\end{aligned}
$$

Part (e)
Check the units of both sides.

$$
\begin{aligned}
{[L] } & =[m v r] \\
& =[m][v][r] \\
& =\mathrm{M} \cdot \mathrm{LT}^{-1} \cdot \mathrm{~L} \\
& =\mathrm{ML}^{2} \mathrm{~T}^{-1}
\end{aligned}
$$

